# Read through all the provided source code to make sure that you

Instructions

1. Read through all  the provided source code to make sure that you understand the context. A  class named BinarySearchTree with an add method plus various utility  methods is provided for you. You must not change any  provided method with a body that is already complete. Note that linked  nodes are used to implement the BinarySearchTree class. Note also that  the data type allowed in the BinarySearchTree is constrained to be a  class that implements the Comparable interface and thus has a natural  total order defined.
2. The min method of the BinarySearchTree class currently has no body. You must provide a correct body for the min method.
3. A  sample main method is provided to illustrate building a simple binary  search tree and then using the min method to search for particular  values.

Problem Description: Finding the Minimum Value in a Binary Search Tree

Complete the body of the min method so that it returns the minimum value in the binary search tree.

The  following table lists an example call to min and the expected return  value when called in the context of the binary search tree pictured  below.

Method CallExpected Return Value

min() 1

/**

* Complete the min method in the nested BinarySearchTree class below.

*

*/

public class BSTMin {

/** Provides an example. */

public static void main(String[] args) {

BinarySearchTree<Integer> iBst = new BinarySearchTree<>();

Integer imin = iBst.min();

// The following statement should print 2.

System.out.println(imin);

BinarySearchTree<String> sBst = new BinarySearchTree<>();

String smin = sBst.min();

// The following statement should print A.

System.out.println(smin);

}

/** Defines a binary search tree. */

static class BinarySearchTree<T extends Comparable<T>> {

// the root of this binary search tree

private Node root;

// the number of nodes in this binary search tree

private int size;

/** Defines the node structure for this binary search tree. */

private class Node {

T element;

Node left;

Node right;

/** Constructs a node containing the given element. */

public Node(T elem) {

element = elem;

left = null;

right = null;

}

}

/*   >>>>>>>>>>>>>>>>>>  YOUR WORK STARTS HERE  <<<<<<<<<<<<<<<< */

///////////////////////////////////////////////////////////////////////////////

//    I M P L E M E N T  T H E  M I N  M E T H O D  B E L O W     //

///////////////////////////////////////////////////////////////////////////////

/**

* Returns the minimum value in the binary search tree.

*/

public T min() {

}

/*   >>>>>>>>>>>>>>>>>>  YOUR WORK ENDS HERE  <<<<<<<<<<<<<<<< */

////////////////////////////////////////////////////////////////////

// D O  N O T  M O D I F Y  B E L O W  T H I S  P O I N T  //

////////////////////////////////////////////////////////////////////

////////////////////

// M E T R I C S //

////////////////////

/**

* Returns the number of elements in this bst.

*/

public int size() {

return size;

}

/**

* Returns true if this bst is empty, false otherwise.

*/

public boolean isEmpty() {

return size == 0;

}

/**

* Returns the height of this bst.

*/

public int height() {

return height(root);

}

/**

* Returns the height of node n in this bst.

*/

private int height(Node n) {

if (n == null) {

return 0;

}

int leftHeight = height(n.left);

int rightHeight = height(n.right);

return 1 + Math.max(leftHeight, rightHeight);

}

////////////////////////////////////

// A D D I N G  E L E M E N T S //

////////////////////////////////////

/**

* Ensures this bst contains the specified element. Uses an iterative implementation.

*/

// special case if empty

if (root == null) {

root = new Node(element);

size++;

return;

}

// find where this element should be in the tree

Node n = root;

Node parent = null;

int cmp = 0;

while (n != null) {

parent = n;

cmp = element.compareTo(parent.element);

if (cmp == 0) {

return;

} else if (cmp < 0) {

n = n.left;

} else {

n = n.right;

}

}

// add element to the appropriate empty subtree of parent

if (cmp < 0) {

parent.left = new Node(element);

} else {

parent.right = new Node(element);

}

size++;

}

}

}

## Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
\$26
The price is based on these factors:
Number of pages
Urgency
Basic features
• Free title page and bibliography
• Unlimited revisions
• Plagiarism-free guarantee
• Money-back guarantee
On-demand options
• Writer’s samples
• Part-by-part delivery
• Overnight delivery
• Copies of used sources
Paper format
• 275 words per page
• 12 pt Arial/Times New Roman
• Double line spacing
• Any citation style (APA, MLA, Chicago/Turabian, Harvard)

# Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

### Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

### Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

### Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

### Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.